Metrics:
Total lines of code: 482
Total lines skipped (#nosec): 0

hardcoded_password_default: Possible hardcoded password: 'none'
Test ID: B107
Severity: LOW
Confidence: MEDIUM
CWE: CWE-259
File: /custom_nodes/ComfyUI_Cutoff/cutoff.py
Line number: 217
More info: https://bandit.readthedocs.io/en/1.7.9/plugins/b107_hardcoded_password_default.html
213	        return emb, pool
214	    else:
215	        return emb
216	
217	def finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked, token_normalization='none', weight_interpretation='comfy'):
218	    clip = clip_regions["clip"]
219	    tokenizer = clip.tokenizer    
220	    if hasattr(tokenizer, 'clip_g'):
221	        tokenizer = tokenizer.clip_g
222	    base_weighted_tokens = clip_regions["base_tokens"]
223	
224	    #calc base embedding
225	    base_embedding_full, pool = encode_from_tokens(clip, base_weighted_tokens, token_normalization, weight_interpretation, True)
226	
227	    # Avoid numpy value error and passthrough base embeddings if no regions are set.
228	    if len(clip_regions["regions"]) == 0:
229	        return ([[base_embedding_full, {"pooled_output": pool}]], )
230	
231	    if mask_token == "":
232	        mask_token = 266#clip.tokenizer.end_token
233	    else:
234	        mask_token = tokenizer.tokenizer(mask_token)['input_ids'][1:-1]
235	        if len(mask_token) > 1:
236	            warnings.warn("mask_token does not map to a single token, using the first token instead")
237	        mask_token = mask_token[0]
238	        
239	    #calc global target mask
240	    global_target_mask = np.any(np.stack(clip_regions["targets"]), axis=0).astype(int)
241	
242	    #calc global region mask
243	    global_region_mask = np.any(np.stack(clip_regions["regions"]), axis=0).astype(float)
244	    regions_sum = np.sum(np.stack(clip_regions["regions"]), axis=0)
245	    regions_normalized = np.divide(1, regions_sum, out=np.zeros_like(regions_sum), where=regions_sum!=0)
246	
247	    #mask base embeddings
248	    base_embedding_masked = encode_from_tokens(clip, create_masked_prompt(base_weighted_tokens, global_target_mask, mask_token), token_normalization, weight_interpretation)
249	    base_embedding_start = base_embedding_full * (1-start_from_masked) + base_embedding_masked * start_from_masked
250	    base_embedding_outer = base_embedding_full * (1-strict_mask) + base_embedding_masked * strict_mask
251	
252	    region_embeddings = []
253	    for region, target, weight in zip (clip_regions["regions"],clip_regions["targets"],clip_regions["weights"]):
254	        region_masking = torch.tensor(regions_normalized * region * weight, dtype=base_embedding_full.dtype, device=base_embedding_full.device).unsqueeze(-1)
255	
256	        region_emb = encode_from_tokens(clip, create_masked_prompt(base_weighted_tokens, global_target_mask - target, mask_token), token_normalization, weight_interpretation)
257	        region_emb -= base_embedding_start
258	        region_emb *= region_masking
259	
260	        region_embeddings.append(region_emb)
261	    region_embeddings = torch.stack(region_embeddings).sum(axis=0)
262	
263	    embeddings_final_mask = torch.tensor(global_region_mask, dtype=base_embedding_full.dtype, device=base_embedding_full.device).unsqueeze(-1)
264	    embeddings_final = base_embedding_start * embeddings_final_mask + base_embedding_outer * (1 - embeddings_final_mask)
265	    embeddings_final += region_embeddings
266	    return ([[embeddings_final, {"pooled_output": pool}]], )
267	
268	
269	class CLIPRegionsToConditioning:
hardcoded_password_string: Possible hardcoded password: ''
Test ID: B105
Severity: LOW
Confidence: MEDIUM
CWE: CWE-259
File: /custom_nodes/ComfyUI_Cutoff/cutoff.py
Line number: 231
More info: https://bandit.readthedocs.io/en/1.7.9/plugins/b105_hardcoded_password_string.html
227	    # Avoid numpy value error and passthrough base embeddings if no regions are set.
228	    if len(clip_regions["regions"]) == 0:
229	        return ([[base_embedding_full, {"pooled_output": pool}]], )
230	
231	    if mask_token == "":
232	        mask_token = 266#clip.tokenizer.end_token
233	    else:
234	        mask_token = tokenizer.tokenizer(mask_token)['input_ids'][1:-1]